
SFA Modernization Partner
United States Department of Education
Student Financial Assistance

Internet Application and Technical
Architecture Standards

Task Order #4
Deliverable #4.1.5

February 16, 2000

U.S Department of Education Internet Application Standards
Student Financial Assistance
SFA Modernization Partner

ii February 16, 2000

Table of Contents

1 Scope of this Document ___ 1

2 Overview of the Enterprise Architecture___ 2

3 Overview of the Application Architecture _______________________________________ 4

4 Standards Covering All Aspects of Development _________________________________ 6

4.1 Java Coding Conventions __ 6

4.2 Security __ 6

4.3 Common Personnel Roles ___ 7

4.4 Component Library and Reuse ___ 9

5 Browser-Based Application Construction Standards ______________________________ 10

5.1 Model, View, Controller (MVC) Design Pattern _______________________________ 10

5.2 Event Flow ___ 10

5.3 Implementing Models with EJBs __ 12

5.4 Implementing Views with JSPs ___ 13

5.5 Implementing Controllers with Servlets ______________________________________ 14

5.6 Client-Side Presentation ___ 15
5.6.1 Graphics Formats __ 15
5.6.2 HTML, JavaScript Standards ___ 15
5.6.3 JSP Standards ___ 16

6 Java Applet Construction Standards ___ 17

7 Java Application Construction Standards _______________________________________ 18

8 Faceless Application Construction Standards ____________________________________ 19

U.S Department of Education Internet Application Standards
Student Financial Assistance
SFA Modernization Partner

1 February 16, 2000

1 Scope of this Document

"Analyze the proposed standards and document them in such a way as to promote a clear
understanding by the intended audience and clear judgment on compliance. Standards will be
documented according to prevailing GAO/OMB criteria. Set objectives for compliance by
understanding constraints that may inhibit the adoption of the standards by existing and in-process
systems." -- Task Order 4 Technical Proposal Task Approach

"Application and technical architecture standards documented in Microsoft Word ready for release
to SFA and contractors including targets/objectives for compliance from non-compliant systems.
These standards will be tested for readability and understandability by SFA and contractor
personnel." -- Task Order 4 Technical Proposal Acceptance Criteria

The primary purpose of this document is to describe the SFA's standard application environment
at a level that is meaningful to enterprise and application architects. The application environment
is defined by the standards SFA has selected to utilize for all new software development from this
point forward. Specifically, SFA has decided to embrace an Internet-centric model of application
development that is based on the Java 2 Enterprise Edition language and APIs (application
programming interfaces). This document assumes the reader is familiar with the Java platform's
concepts of code portability via the Java Virtual Machine and the Core APIs. For more
information on these issues, see the on-line introduction at <http://java.sun.com/nav/whatis/>.

In describing the environment, this document makes reference to the larger framework of
standards, policies, and procedures in which the application development process exists.
However, this framework is extensively described in other documents, even though some of those
documents have not been released yet. The goal in mentioning this larger framework is to help
architects to understand the entire process and where these application standards fit, not to fully
describe these other parts.

Lastly, readers should not consider this document to be a static manifesto. The Enterprise
Architecture Team is keenly interested in hearing from practitioners about what works, what
doesn't, what's missing, and what's too restrictive, amongst other things. As the maturity of both
the development practices and the Java technologies increases, the application architecture will
need to be updated as well.

U.S Department of Education Internet Application Standards
Student Financial Assistance
SFA Modernization Partner

2 February 16, 2000

2 Overview of the Enterprise Architecture

SFA has a significant, ongoing investment in its current enterprise systems, and it realizes that it
can't "untangle the hairball" overnight. As such, SFA is building a new enterprise architecture
that facilitates three things:

1. Salvaging the investment SFA has already made in its legacy systems by building a layer
that presents a unified view of the systems and their data

2. Implementing new systems that provide analytical tools that allow entirely new ways of
analyzing enterprise data

3. Implementing a standardized application environment that will provide the application
infrastructure for all new software development from this point forward

These items correspond to the Enterprise Application Integration (EAI) layer, the Data Warehouse
layer, and the Internet Architecture layer, respectively. (See Figure 1.)

U.S Department of Education Internet Application Standards
Student Financial Assistance
SFA Modernization Partner

3 February 16, 2000

Figure 1: Enterprise Architecture

All communications between layers is mediated by the EAI layer. This allows for a unified view of
the enterprise's data and system service resources, even as legacy systems are decommissioned
and new systems are brought in to take their place.

U.S Department of Education Internet Application Standards
Student Financial Assistance
SFA Modernization Partner

4 February 16, 2000

3 Overview of the Application Architecture

SFA has decided to implement a standardized software development and deployment
architecture for all new software development going forward. This is in contrast to the past
practice of "anything goes," where software developers were allowed to use nearly any
combination of hardware, operating system, communications protocols, and programming
language they wished. While convenient for the software developers, this practice has saddled
SFA with a complex, heterogeneous environment that is expensive to maintain and difficult to
modify as business needs evolve. To break from this practice SFA has decided to adopt an Internet-
centric, multi-tiered, component-based application environment.

Internet-centric:

All new custom-developed software -- and to the degree possible, all commercial, off-the-shelf software
-- will utilize common Internet standards like TCP/IP, HTTP, SSL, HTML, and ECMAscript for
communications and presentation. For applications that do not require a user interface, like business-to-
business or e-commerce data exchanges, XML will be used. Other common standards like LDAP,
X.509, and ANSI SQL '92 will also be used where applicable to provide services throughout the
enterprise. (See the SFA Common Operating Environment document for the complete list of
standards.)

Multi-tiered:

Application functionality will be distributed across several tiers. User interface presentation will be
handled by thin clients like Web browsers or lightweight client applications. Static information resources
are hosted on a Web server. Presentation logic, application-specific workflow, and reusable business
logic will be encapsulated into components that are managed by an application server. Additional,
special-purpose servers can be relied upon to provide enterprise-wide services for security,
authentication, personalization, and business-to-business data exchange. Existing enterprise data
resources will continue to be housed in a separate legacy layer that is accessed via the EAI layer.
Storage for new data will reside in the Internet layer.

Component-based:

As much reusable business logic as possible will be encapsulated into components, which are
independent objects that are dynamically and transparently executable over a network by multiple
different applications simultaneously. These components reside on a dedicated server called an
application server. The repository of components on the application server will allow new applications
to rapidly and efficiently leverage earlier development efforts, facilitating a "plug and play" approach to
building applications.

While there are several component standards to choose from, SFA has decided to adopt the
Enterprise JavaBeans (EJB) component standard from Sun Microsystems. EJBs are part of a larger
standard, known as the Java 2 Enterprise Edition (J2EE), which is based on the Java 2 Standard
Edition (J2SE) language and API platform. J2SE specifies the Java language, a core set of APIs

U.S Department of Education Internet Application Standards
Student Financial Assistance
SFA Modernization Partner

5 February 16, 2000

(including user interface, networking, database access, and security), and the Java Virtual
Machine. The J2EE standard extends the J2SE with a set of APIs that provide uniform access to
traditional middleware and infrastructure services, regardless of their particular implementation.
This helps developers focus on developing the business logic of the application instead of having
to also build common enterprise services into their software.

Figure 2: Generic J2EE Application Model

Figure 2, "J2EE Application Model," illustrates the typical layers and technologies that a J2EE
application is distributed across. (Also possible, but not explicitly represented in this figure, is
business-to-business data exchange using XML. An XML-enabled client would exchange
information with a Java Servlet in the Server-Side Presentation layer over HTTP or HTTPS.)

U.S Department of Education Internet Application Standards
Student Financial Assistance
SFA Modernization Partner

6 February 16, 2000

4 Standards Covering All Aspects of Development

4.1 Java Coding Conventions

All developers will follow the naming and commenting conventions outlined in the Java Code
Conventions documentation maintained by Sun Microsystems.

All custom-developed packages will utilize gov.sfa as their naming base. Note: SFA does not, at
this time, have the associated domain name (sfa.gov) registered with the GSA via
<http://www.nic.gov/>. We recommend that SFA do so.

4.2 Security

The SFA's standard method for securing TCP/IP-based transactions is called Secure Socket Layer
(SSL). SSL establishes a framework in which a cryptographically-secure network connection
between the browser and the web server can be made. This allows the client and server to
exchange data without allowing others on the network to see the cleartext of the data
transmitted, and it also ensures the reliability of the data -- what is sent is what is received. SSL
can also be used to authenticate the identity of the client when the client is supplied with a digital
certificate. SSL is not tied to any one particular form of data encryption; which encryption
algorithm and bit-strength used to secure the data is negotiated between the server and the
browser when the SSL session is established.

SFA must also utilize products that are compliant with the FIPS-140-1 standard for cryptographic
security. (The legal authority for issuance of FIPS PUBS derives from Section 111(d) of the Federal
Property and Administrative Services Act of 1949 as amended by the Computer Security Act of
1987, Public Law 100-235.) Every reasonable effort has been made to select vendors whose
products have successfully completed a FIPS-140-1 audit, thus allowing application developers to
rely on the audited mechanisms provided by the J2EE application development environment.

If the data being transferred between the application and the user is sensitive in nature, e.g.,
financial data, the data transfer will be cryptographically secured with SSL v3. The bit strength of
the encryption to use (40-bit vs. 128-bit, for example) is left up to the judgement of the application
developer, but a single application should use the same bit strength throughout all interactions
that need to be secured. The preference, however, is to utilize 128-bit (or stronger) encryption
where not a prohibitive burden upon the target user population. The recent relaxation of the
export controls on products implementing strong encryption should facilitate the broader use of it
in the future.
For data connections between components of an application, or between an application and
enterprise-wide services like an LDAP server, SSL encryption will be used if the data is considered
sensitive or if the transaction can potentially provide access to data considered sensitive.

U.S Department of Education Internet Application Standards
Student Financial Assistance
SFA Modernization Partner

7 February 16, 2000

4.3 Common Personnel Roles

The J2EE application programming methodology specifies several formal roles that are unique to
component development and the EJB component methodology in particular. Each role may be
performed by a different party, but a single party may perform several EJB architecture roles. For
example, a single programmer may perform the two EJB architecture Roles of the Enterprise Bean
Developer and the Application Assembler.

Application Component Providers produce the building blocks of a J2EE application. This role is
further decomposed into the following skill areas:

HTML Specialists, Graphic Designers, Multimedia Authors

These are the individuals who are responsible for the implementation of the Web client user
interface. They are skilled in HTML markup, graphics design for web sites, and Web-based
multimedia technologies like Flash animation and streaming audio/video. They are not
required to know any Java development beyond how to use any JSP custom tags created by
the application developers. Their primary focus is on development of the Views in the MVC
design. Their output is the set of HTML and JSP pages that make up the application's user
interface, as well as the associated graphics and multimedia files.

Application Developers

Application developers produce the servlets and supporting libraries that implement the
Controller components of the MVC design. As such, they integrate the Views with the
Models and provide the associated workflow, error handling, etc. Application Developers
are also responsible for the development of the JSP custom tag libraries that are used by the
HTML specialists. The Application Developer is typically an application domain expert. The
developer is required to be aware of the servlet environment and its consequences when
programming, including concurrency considerations, and create the web application
accordingly.

Enterprise Bean Developer

The Enterprise Bean Developer (EJB Developer for short) is the producer of enterprise
beans. His or her output is an ejb-jar file that contains one or more enterprise bean(s). The
EJB Developer is responsible for the Java classes that implement the enterprise bean’s
business methods; the definition of the bean’s remote and home interfaces; and the bean’s
deployment descriptor. The deployment descriptor includes the structural information (e.g.
the name of the enterprise bean class) of the enterprise bean and declares all the enterprise
bean’s external dependencies (e.g. the names and types of the resource managers that the
enterprise bean uses). The EJB Developer is typically an application domain expert. The EJB
Developer develops reusable enterprise beans that typically implement business tasks or
business entities. The EJB Developer is not required to be an expert at system-level
programming. Therefore, the EJB Developer usually does not program transactions,
concurrency, security, distribution, or other services into the enterprise Beans. The EJB

U.S Department of Education Internet Application Standards
Student Financial Assistance
SFA Modernization Partner

8 February 16, 2000

Developer relies on the EJB Container for these services. An EJB Developer of multiple
enterprise beans often performs the EJB architecture Role of the Application Assembler.

Application Assembler

The Application Assembler combines enterprise beans into larger deployable application units. The
input to the Application Assembler is one or more ejb-jar files produced by the EJB Developer(s).
The Application Assembler outputs one or more ejb-jar files that contain the enterprise beans along
with their application assembly instructions. The Application Assembler has inserted the application
assembly instructions into the deployment descriptors. The Application Assembler can also combine
enterprise beans with other types of application components (e.g. JSPs, servlets) when composing
an application. The Application Assembler is a domain expert who composes applications that use
enterprise Beans. The Application Assembler works with the enterprise Bean’s deployment
descriptor and the enterprise Bean’s client-view contract. Although the Assembler must be familiar
with the functionality provided by the enterprise Beans’ remote and home interfaces, he or she does
not need to have any knowledge of the enterprise Beans’ implementation.

Deployer

The Deployer takes one or more ejb-jar files produced by a EJB Developer or Application
Assembler and deploys the enterprise beans contained in the ejb-jar files to the application server.
The Deployer must resolve all the external dependencies declared by the EJB Developer (e.g. the
Deployer must ensure that all resource manager connection factories used by the enterprise beans
are present, and he or she must bind them to the resource manager connection factory references
declared in the deployment descriptor), and must follow the application assembly instructions defined
by the Application Assembler. To perform his role, the Deployer uses tools provided by the
application server vendor. The Deployer’s output are enterprise beans (or an assembled application
that includes enterprise beans) that have been customized for the target operational environment, and
that are deployed in a specific EJB Container. The Deployer is an expert at a specific operational
environment and is responsible for the deployment of enterprise Beans. For example, the Deployer is
responsible for mapping the security roles defined by the Application Assembler to the user groups
and accounts that exist in the operational environment in which the enterprise beans are deployed.

The deployment process is typically two-stage:

• The Deployer first generates the additional classes and interfaces that enable the container to
manage the enterprise beans at runtime. These classes are container-specific.

• The Deployer performs the actual installation of the enterprise beans and the additional
classes and interfaces into the application server.

In some cases, a qualified Deployer may customize the business logic of the enterprise Beans at their
deployment. Such a Deployer would typically use the container tools to write relatively simple
application code that wraps the enterprise Bean’s business methods.

U.S Department of Education Internet Application Standards
Student Financial Assistance
SFA Modernization Partner

9 February 16, 2000

In addition to the above roles there are several roles that are associated with any software
development effort, but which are beyond the scope of this document. They include systems
administrators, who are responsible for the operation and maintenance of the hardware and
operating software that supports the application. Another common role is that of a source code
manager who ensures the reliability and operation of the source code repository system.

4.4 Component Library and Reuse

Note: The component library does not yet exist within the SFA. We recommend that SFA implement the
library's basic architecture and functionality prior to the first use of the Internet development
environment.

The component library is a central Web site that catalogs all the major components that have
already been developed and that are available for reuse in other projects. It also lists components
that have been identified for inclusion in the library, but which are currently under development
or which are scheduled and funded for development. The documentation is in standard JavaDoc
format, providing the complete object signature as well as all public and remote interfaces. The
validated range of inputs and outputs (behaviors) are also included, if appropriate, as well as a
general history of the component (project that originally built the component, projects currently
or forecasted to make use of the component, and the component's owner and maintenance
contact person(s)).

The library facilitates component discovery through both browsing and searching. Components
are categorized according to data and business logic domains as well as package organization,
and can be browsed according to any one of these categorizations. A keyword search facility is
also included.

The component library is a dynamic resource that is expected to undergo continual change as
new applications are developed, business or legislative drivers change, etc. Part of the application
development process is identifying opportunities to create reusable components and then making
them available for reuse via the component library. General information about these components,
once identified, should be provided to the component librarian via an on-line form. The librarian
will then add this information to the section dedicated to components currently under
development.

Once the development of a component is complete and it has been successfully deployed in a
production environment the development team will provide the source code for the component so
that it may be added to the library. If the component needs to be updated or removed from the
library, the component's owner should contact the librarian.

U.S Department of Education Internet Application Standards
Student Financial Assistance
SFA Modernization Partner

10 February 16, 2000

5 Browser-Based Application Construction Standards

5.1 Model, View, Controller (MVC) Design Pattern

The standard architecture for the development of all applications is based on the Model, View,
Controller (MVC) design pattern. Models are the enterprise data and business logic resources, and
are typically implemented as EJBs. Views are static HTML templates that include JSP code to
provide users with a dynamic view of the data and business logic contained in the EJB models.
Controllers are servlets that mediate between the models and the views, providing request
handling and workflow management within the application.

In order to aid the separation of the Views from the Controllers and Models, all system inputs are
translated into Business Events. A Business Event is an application-centric, view-independent
representation of a user request. The user request, in turn, is a representation of a business
function. The catalog of Business Events that an application is able to process becomes the
functional capability of the application itself.

MVC provides a useful separation of application responsibility and development team duties,
allowing each member of the application team to focus on their particular skillset. For example,
Web designers can focus on developing Views (HTML pages) without having to know about Java
software development; they only need to learn a few new HTML/XML tags to be able to display
the properties of the EJB Models. Meanwhile, junior developers can focus on implementing
Controllers in pure Java without having to also develop the HTML look-and-feel of the
application. Lastly, senior developers can focus on creating the Models of the enterprise's data
architecture and business processes in a reusable and scalable fashion.

5.2 Event Flow

Figure Three shows the event flow for a typical MVC-based application. All requests from the
client go to a servlet known as a Front Component, which provides a single point of entry for all
application interaction. The requests are then sent to another servlet, known as the Request
Processor, which converts the client request (in this case, an HTTP POST or GET) to a Business
Event. The Business Event is then sent to the Web Controller servlet. The Web Controller sends the
Event to the EJB Controller servlet, which processes the Event. Depending on the Event, the EJB
Controller will coordinate the execution of business logic and data manipulation by one or more
EJBs. Once the Event has finished processing, the EJB Controller notifies the Web Controller if the
Model data has changed, necessitating an update of the Views' data JavaBeans. If it has, the Web
Controller passes the update event to the data JavaBeans (1), which then request updated data
from the EJBs. The Web Controller then selects the appropriate JSP response template (View) to
return to the client (2). The JSP template collects whatever properties it needs from the data
JavaBeans when it is executed by the JSP Engine, and the resulting HTML is passed back to the
client.

U.S Department of Education Internet Application Standards
Student Financial Assistance
SFA Modernization Partner

11 February 16, 2000

Figure 3: Detailed Application Model

In Figure Three, the Model components are in red, the View components are in blue, and the
Controller components are in green.

Let's imagine that a student wants to make a payment on a student loan, and that he's decided to
use one of the new applications the SFA has developed with this architecture to make this
possible over the Web. Let's also assume that the student has already authenticated himself, that
his browser has established a cryptographically-secure network connection with the SFA's Web
server, and that he's looking at a page that is requesting payment information. After entering his
payment information he clicks a button labeled "Send Payment."

The "Send Payment" button causes the browser to initiate an HTTP POST connection with the
Web server, transferring the student's payment information to the Front Component servlet. The
Front Component does some simple security and request validation before passing the POST data
to the Request Processor servlet. The Request Processor evaluates the POST data, determines that
a client (the student) is initiating a makePayment Business Event, and passes the makePayment
event to the Web Controller servlet.

The Web Controller performs several actions after receiving the makePayment event. First, it passes
the makePayment event to the EJB Controller, which is responsible for managing the EJBs that
actually execute the business logic of the Business Event. Thus the EJB Controller would know
that a makePayment event needs to:

1. Get the funds from the student's fund source (credit card or checking account)
2. Deposit the funds into the account of the loan holder
3. Update the account record with the transaction details

Each one of these steps will likely be handled by one (or more) EJBs. If there are any errors along
the way the EJB Controller will usually pass the exception back to the Web Controller so that the
Web Controller can send an error message to the client. Otherwise, the EJB Controller will

U.S Department of Education Internet Application Standards
Student Financial Assistance
SFA Modernization Partner

12 February 16, 2000

complete successfully and, if there were changes to the Model data, pass an Updated Model Event
back to the Web Controller.

The Web Controller, upon the EJB Controller's completed processing of the Business Event, first
propagates the Updated Model Event (if it occurs) to any existing data JavaBeans in the View.
These data Beans mirror the data contained in the entity EJBs present in the Model, but in a
format that is consistent with and meaningful to the application's problem domain instead of the
enterprise's data architecture. (The two data models should be very similar, but an application
frequently needs to only manipulate a small subset of the entire data model; thus the local mirror
is typically a simplified version that's tailored to the application's problem domain.) The data
Beans know how to interrogate the entity EJBs directly so that they can update themselves when
they receive the Updated Model Event notification.

The second task of the Web Controller is to select the appropriate display template, based on the
result of the EJB Controller's processing of the Business Event. Assuming the student's payment
transaction completed successfully, the Web Controller selects a JSP template that indicates such,
along with a listing of the account transactions that have occurred over the past month --
including this latest payment transaction. The Web Controller reads the JSP template from disk
and sends it out to the client via the JSP Engine as the application's response to the client's original
POST request. The JSP Engine interprets the JSP commands that are embedded in the JSP
template. In this case, the embedded JSP happens to be a custom JSP tag that gets the list of the
past month's account transactions from a data Bean. The custom tag evaluates to a nicely
formatted HTML table of the account transactions, which gets set to the Web client along with the
static HTML in the JSP template.

5.3 Implementing Models with EJBs

The EJBs that make up the application's Model can be implemented as either Session Beans or
Entity Beans, as is appropriate for their function.

The Model is an abstraction of the data on which an application is based. Model data should only
be updated when events that require data changes are passed to the EJB Controller, and the EJB
Controller should be the only component to actually modify the Model's data. After each event is
processed the EJB Controller is responsible for returning an Updated Model Event to the Web
controller if an update has occurred. Model data should only be modified by the EJB Controller; it
can be directly read by view components, but never written.

The EJBs implementing the Model will interact with the other layers (legacy, COTS, and data
warehouse) via the Enterprise Application Integration Bus and the CORBA interfaces it provides.
The CORBA interfaces, which have not been developed yet, will provide a unified view of
enterprise data and business logic. Internet developers will use the JavaIDL tools to compile the
IDL provided by the EAI Bus developers into the necessary Java stubs. At no time will any Model
component make a direct call to a component or service in another layer.

U.S Department of Education Internet Application Standards
Student Financial Assistance
SFA Modernization Partner

13 February 16, 2000

If a new application needs persistent storage of data that does not already exist elsewhere in the
enterprise, that data may be stored in the Oracle database that is a part of the Internet layer. All
interactions with this data storage service will be done via JDBC 2.0 (the java.sql and
javax.sql packages).

5.4 Implementing Views with JSPs

JSP-based Views are HTML pages that have the ability to expose dynamic enterprise data via JSP
tags that get information directly from a JavaBean. These JSP tags are interpreted at response time
by the JSP container, and the result is substituted in place of the JSP tag. Thus they are a specific
representation of the model for a client that can understand HTML. The JSP tags, which are
similar to HTML tags, are readily learned by HTML page designers. Given a copy of the data
model, an HTML page designer can display any application data that is contained in a JavaBean.

For example, let's say that a designer wants to display the current year. To gain access to the
standard JavaBean called calendar that represents the current date, the designer would include
the following tag at the beginning of the HTML page to create an instance of the calendar class:

<jsp:useBean id="today" class="calendar.jspCalendar" />

Then, wherever the designer wants to put the date on the page, she'd use the following tag:

<%=today.getYear() %>

In the resulting HTML page that is sent to the requesting browser, the entire JSP tag is replaced
with the value returned from the getYear() method call performed on the today object.

For more complicated dynamic information, application developers will need to develop a custom
tag library that the HTML page designers can take advantage of. For example, a query to see all
the payments made on a student loan in the current year can result in an arbitrary number of
rows in the result set. The designer needs to be able to programmatically iterate over the result set,
displaying each line in turn. Instead of forcing the HTML designer to know Java, or having a Java
developer edit the HTML files, a Java developer can create a set of custom JSP tags that display a
table containing the payment information. To use these tags the designer first declares that she is
going to use a custom tag library:

<%@ taglib prefix="myCustomTagLibrary"
uri="/myApplication/myCustomTagLibrary.tld" />

Then she'll usually instantiate the objects in the library by calling a startup routine:

U.S Department of Education Internet Application Standards
Student Financial Assistance
SFA Modernization Partner

14 February 16, 2000

<myCustomTagLibrary:defineObjects />

Finally, she can use the custom tags, like this:

<myCustomTagLibrary:getLoanPayments studentID="123-45-6789" year="1999" />

In the resulting HTML page that is sent to the requesting browser, the entire custom tag is
replaced with a table containing a list of all the loan payments in 1999 from student #123-45-
6789.

5.5 Implementing Controllers with Servlets

All Controller components should be implemented as servlets.

The Front Component is a central servlet that receives all HTTP requests. It ensures that all
necessary Web components needed by the application are initialized at the correct time and that
all HTTP requests are sent to the Request Processor. Front Components are useful because they
provide a single entry point to an application, thus making security, application state, and
presentation uniform and easier to maintain.

A Request Processor is the link between the Web application and an HTTP-based client. The
Request Processor is responsible for converting an HTTP request to Business Events that will be
used throughout the application. This component allows the application developer to centralize
all HTTP-specific processing in one location. This component also allows the EJB portion of the
application to be independent of any single client type.

The Web Controller is responsible for forwarding the events generated by the Request Processor
component to the EJB Controller. The Web Controller ensures that the resulting Updated Model
Events returned from the EJB Controller are propagated to the appropriate data JavaBeans
components.

An EJB Controller accepts events that are received from the Web Controller and makes the
necessary calls on the enterprise beans that are affected by the event. The EJB Controller is also
responsible for maintaining the state of the user session with the application. After each event is
processed the EJB Controller is responsible for returning an Updated Model Event to the Web
Controller.

U.S Department of Education Internet Application Standards
Student Financial Assistance
SFA Modernization Partner

15 February 16, 2000

5.6 Client-Side Presentation

5.6.1 Graphics Formats

All graphics will be in either GIF 87a format or JPEG format. The GIF format is preferred for the
majority of graphics, and a graphic in the GIF format will always end it's filename with .gif. No
preference is given between interlaced and non-interlaced GIF graphics.

If the graphic is photographic in nature, meaning that there are many subtle variations of a
particular shade, the JPEG format is frequently a better choice. There are a variety of compression
levels available when using the JPEG compression scheme. The particular level to use is left to the
discretion of the developer; however, image quality should not be sacrificed for size.

If a graphic is referenced by an HTML img tag, the height and width attributes must be included
in the img tag and they must match the actual dimensions of the image being referenced.

If the graphic is going to be used as part of an application that is to be used by the general public,
only the "browser-safe" colors are allowed. This is a palette of 216 colors that every browser that
displays on an 8-bit color display device can render without resorting to dithering. Most modern
graphics programs include tools for restricting a graphic's color palette to these colors.

5.6.2 HTML, JavaScript Standards

In general, the philosophy that drives the HTML coding recommendations is one of "universal
design." This means that pages will be designed to look good across all browsers and that
browser-specific versions of pages will not be developed. The architect must determine which one
of three possible audiences will be the primary users of the application: the general public,
business partners, or SFA employees.

• For sites that are accessible to the general public, the highest level of markup allowed is
compliant with HTML 3.2, plus frames. Browser-specific tags and/or attributes are
expressly not allowed. JavaScript, if it must be used, should be used sparingly and should
be compliant with v1.2 of the language. Architects can not rely on the proper operation of
the JavaScript, however. All data received from the client must be validated on the server
side in addition to any JavaScript validation done on the client side. The pages that utilize
JavaScript must be usable even if the JavaScript does not function correctly.

• For sites that are restricted to business partners, the highest level of markup allowed is
compliant with HTML 4.0, but cascading style sheets and layers are not allowed because
of their generally poor implementation in current browsers. JavaScript that is compliant
with v1.4 of the language is allowed. All data received from the client must be validated
on the server side in addition to any JavaScript validation done on the client side.

• For sites that are restricted to SFA employees, the highest level of markup and JavaScript
allowed is compliant with the highest level of HTML that the SFA's standard browser

U.S Department of Education Internet Application Standards
Student Financial Assistance
SFA Modernization Partner

16 February 16, 2000

supports. Data validation must still be performed on the server side in addition to any
JavaScript validation done on the client side.

Architects should note that there may be other standards, particularly concerning Web site
graphic design, to which they may also be subject to.

Regardless of the application's audience, the following standards also apply. Filenames of all
HTML documents will end in .html. Spaces or other characters that must be URL escaped are not
allowed in the filenames. Every HTML file will include the appropriate DTD declaration as the
first line of the file, and the file will be validated with a true SGML validation program. Currently,
the Microsoft Windows platform has only one true validation program, called "A Real Validator."
It is available from <http://www.arealvalidator.com/>. The W3C offers a free, on-line validator
at <http://validator.w3.org/>. Other validators must be approved prior to their use. All HTML
documents that contain server-parsed elements (like JSP) should be validated after they are served
from the Web server, thus checking the document in the final form that users will see.

5.6.3 JSP Standards

Since the design focus for the SFA's use of JSP technology is to provide a frame in which to
display enterprise data, the use of complex JSP scripting in an HTML page should be minimal to
non-existent. For the vast majority of applications, access to Bean properties and some custom
tags that implement simple looping constructs should be sufficient. In particular, the JSP
templates should not need any embedded Java.

U.S Department of Education Internet Application Standards
Student Financial Assistance
SFA Modernization Partner

17 February 16, 2000

6 Java Applet Construction Standards

Much of the philosophy behind the preceding standards discussion regarding client-side
presentation is applicable to the inclusion of Java applets in Web pages. In particular, it is
necessary to segment the potential user population based on their browser's capabilities and to
then target the applet's development to those technology constraints.

• For sites that are accessible to the general public, applets are forbidden. The delays
experienced when downloading an applet and initializing the browser's Java Virtual
Machine (JVM) are frustrating to the user. In addition, because of the generally low quality
of the JVMs embedded in the browsers most commonly in use across the Internet,
extensive testing (greater than a dozen possible combinations of operating systems,
browsers, and JVM versions) and coding around implementation quirks are cost
prohibitive. Finally, applets are generally incapable of providing alternative forms that are
able to provide access to disabled users.

• For sites that are restricted to business partners, applets may be used if necessary, but
they aren't encouraged. It is strongly suggested that developers use the downloadable Java
Plug-In product with the Java Runtime Environment v1.2 for execution consistency and
guaranteed access to Java 2 functionality. Architects should carefully consider this barrier
to entry for business partners who wish to use the software, however.

• For sites that are restricted to SFA employees, applets may be used if necessary. It is
strongly suggested that developers use the downloadable Java Plug-In product with the
Java Runtime Environment v1.2 for execution consistency and guaranteed access to Java 2
functionality.

U.S Department of Education Internet Application Standards
Student Financial Assistance
SFA Modernization Partner

18 February 16, 2000

7 Java Application Construction Standards

Standalone Java applications, if developed, will be based on the Java 2 Standard Edition APIs.
Java applications will not take advantage of other APIs unless they are 100% Java, and even in
that case those APIs should not be used if the core or extended APIs are suitable for the task.

As with the Web-based applications, Java applications will utilize the MVC design pattern
architecture.

They will utilize the Java 2 Swing UI components with the Pluggable Look and Feel set to the Java
Look & Feel. Accessibility features offered by the Accessibility API must be utilized to provide a
complete user experience for those who need to utilize adaptive technologies.

U.S Department of Education Internet Application Standards
Student Financial Assistance
SFA Modernization Partner

19 February 16, 2000

8 Faceless Application Construction Standards

"Faceless" applications are those applications that are meant to facilitate automated business
functionality without any direct user involvement. An example of this kind of application is a
servlet that receives an XML document, parses it, updates a database with data from the XML
document, and returns a confirmation message to the original sender. Thus they can be
considered to implement (and be subject to the architecture standards relevant to) the Model and
Controller aspects of the MVC design pattern.

